

A Django TR-069 ACS Server

The hows and whys of building an ACS server into an
existing Django based provisioning and CRM system.

May contain traces of XML.

Thomas Steen Rasmussen

DjangoCPH Day 2018

Shameless

● When not working with TR-069 I have a few
projects in my sparetime

● This seems like a good time to tell you about
them

CensurFriDNS / UncensoredDNS

● Open, free, uncensored DNS servers
● DNSSEC enabled
● Privacy respecting
● Since 2009
● Anycast servers
● https://blog.censurfridns.dk/
● http://blog.uncensoreddns.org/

https://blog.censurfridns.dk/
http://blog.uncensoreddns.org/

BornHack

● Annual 7 day outdoor hacker festival
● Flyers outside
● Several organisers present
● Every August on Bornholm
● https://bornhack.dk/
● https://twitter.com/bornhax/
● Talks, workshops, fun.

https://bornhack.dk/
https://twitter.com/bornhax/

Agenda

1) The Problem
• XML? SOAP? What year is this?! I demand an

explanation.

2) Broadband Forum
• The people responsible for this mess.

3) TR-069, CWMP, ACS and other acronyms
• A crash course - getting all the acronyms straight.

4) Fitting it all into Django
• Applying the awesome. The real reason we are

here.

1) The Problem, and why XML
ISPs need to configure equipment in a
standardised way across hundreds of hardware
suppliers and thousands of models.

Creating a standard to encompass all this is a
huge undertaking, and requires a very strict
and thorough approach to standardisation.

SOAP uses XML. So since everything else is
XML, so are all the specs, and even the
references to other literature and standards.

They even have XML explaining how to XML.
Really.

2) Broadband Forum History
● “The Frame Relay Forum” (1991)
● “The ATM Forum” (1991)
● “The ADSL Forum” (1994)
● “DSL Forum” (1999) (formerly “ADSL Forum”)
● “MPLS Forum” (2000)
● “MPLS and Frame Relay Alliance” (2003) (merged “Frame

Relay Forum” with “MPLS Forum”)
● “MFA Forum” (2005) (merged “ATM Forum” with “MPLS and

Frame Relay Alliance”)
● “IP/MPLS Forum” (2007) (formerly “MFA Forum”)
● “Broadband Forum” (2008) (formerly “DSL Forum”)
● “Broadband Forum” (2009) (assimilated “IP/MPLS Forum”)

3) TR-069

TR-069 is the primary document. It was first released in
2004. XML and SOAP to the rescue!

TR-069 means a lot of things. RPCs, data models, and
the CWMP protocol are defined in TR-069.

But it can also mean all the related technical reports. It
can be a bit overwhelming.

Devices can get TR-069 certified (though not many do):

https://www.broadband-forum.org/implementation/interop-cer
tification/tr-069-certified-products
(16 total products certified!)

https://www.broadband-forum.org/implementation/interop-certification/tr-069-certified-products
https://www.broadband-forum.org/implementation/interop-certification/tr-069-certified-products

TR-069 continued
● TR-069 defines the CWMP protocol and the

InternetGatewayDevice root data model. First version is
from 2004. Latest version is amendment 5 from
November 2013.

● CWMP is the CPE WAN Management Protocol currently
at version 1.4.

● CWMP defines: Terminology, Protocols, Encodings,
Authentication, ACS discovery, Connection
establishment, RPC methods, and more.

● TR-069 been extended and improved many, many times.
This happens in new Technical Reports.

● The next couple of slides show the important documents
in play.

Some Technical Reports
Report Name Latest

TR-001 ADSL Forum System Reference Model May 1996

TR-069a5 CPE WAN Management Protocol November 2013

TR-098a2c1 Internet Gateway Device Data Model for TR-069 December 2014

TR-106a7 Data Model Template for TR-069-Enabled Devices September 2013

TR-135a3 Data Model for a TR-069 Enabled STB November 2012

TR-143a1c1 Enabling Network Throughput Performance Tests
and Statistical Monitoring

August 2015

TR-181i2a11 Device Data Model for TR-069 August 2016

https://www.broadband-forum.org/standards-and-software/technical-
specifications/technical-reports

Name Latest definitions in Comments

InternetGatewayDevice:1 tr-098-1-8-0-full.xml
September 2014

Home internet routers

Device:1 tr-181-1-7-0-full.xml
November 2015

Anything but home internet
routers

Device:2 tr-181-2-11-0-full.xml
July 2016

Unified
InternetGatewayDevice:1
and Device:1

Root Data Models

Name Latest definitions in Comment

FAPService:2 tr-196-2-1-0-full.xml
August 2015

Femto AP

FAPService:1 tr-196-1-1-1-full.xml
November 2012

Femto AP

StorageService:1 tr-140-1-3-0-full.xml
May 2017

Storage

STBService:1 tr-135-1-4-0-full.xml
August 2015

Device

VoiceService:2 tr-104-2-0-0-full.xml
March 2014

VOIP Device

VoiceService:1 tr-104-1-0-0-full.xml
July 2011

VOIP Device

Service Data Models

Name Latest definitions in Comments

TR-069 RPCs cwmp-1-4.xsd
November 2013

RPC calls

XMPP Connection Request cwmp-xmppConnReq-1-0.xsd
November 2013

Jabber! :-)

TR-069 Data Model Definition
Schema (Data Model
Schema)

cwmp-datamodel-1-5.xsd
September 2013

Spec for the
specs

Selected Schema Files

Name Latest definitions in Comments

TR-069 Data Model Data
Types

tr-106-1-0-0-types.xml
November 2013

Data Types

TR-069 Data Model
Bibliographic References

tr-069-1-5-0-biblio.xml
July 2016

References to
RFCs and other
external sources

Support Files

The CPE
● CPE is short for Customer Premises Equipment
● Like many other 3LA it is a bit of an overloaded term
● CPE means any piece of equipment at the customer

premises:
– The internet router

– Settop boxes

– VOIP phones

– Wifi access points

– Anything really

● CPE gets ACS url over DHCP (usually)

The ACS
● ACS is the Auto Configuration Server
● The CPE uses TR-069 to contact the ACS to

get configuration
● This is called a CWMP or ACS session

– A session is always initiated by the CPE

– The CPE can be asked to intiate a session though

– This is called a ConnectionRequest and mostly
happens over HTTP or XMPP.

● A diagram showing ACS position in the network
follows

CWMP
● CWMP defines the protocol
● It specifies that we use HTTP, SOAP, it defines

the RPCs and so on.
● It considers encoding, compression,

authentication, encryption and more.
● It also defines ConnectionRequests over HTTP

and XMPP.
● Illustration of the standard protocol stack

follows.

An ACS Session

● The session is 2-way.
● First the CPE calls RPC methods on the ACS.
● Then the ACS calls RPC methods on the CPE.
● When the ACS is done the session is over.

XML Time

● Time to look at some XML
● This will begin with a quick SOAP and XML primer
● We will look at the first RPC call in every session –

the Inform.
● The Inform contains the info needed to identify and

communicate with the CPE.
● The CPE considers a session successfully initiated

only if it gets an InformResponse RPC reply

SOAP Primer

● SOAP (originally Simple Object Access Protocol) is a protocol
specification for exchanging structured information in the
implementation of web services in computer networks. Its
purpose is to induce extensibility, neutrality and independence.

● It uses XML for its message format, and relies on application
layer protocols, most often Hypertext Transfer Protocol (HTTP)
or Simple Mail Transfer Protocol (SMTP), for message
negotiation and transmission. (thanks Wikipedia!)

● WSDL files are often used to define a SOAP service.
● Note: SOAP doesn’t require a WSDL, and WSDLs can be

used to define non-SOAP services.

<?xml version='1.0' encoding='utf-8'?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:cwmp="urn:dslforum-org:cwmp-1-0">

 <SOAP-ENV:Header>

 <cwmp:ID SOAP-ENV:mustUnderstand="1">inform</cwmp:ID>

 </SOAP-ENV:Header>

<SOAP-ENV:Body SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

Diving in: A TR-069 Inform 1/5

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

Inform 2/5
 <cwmp:Inform>

 <DeviceId>

 …

 </DeviceId>

 <Event xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="cwmp:EventStruct[1]">

 …

 </Event>

 <MaxEnvelopes>1</MaxEnvelopes>

 <CurrentTime>2018-03-13T23:38:03</CurrentTime>

 <RetryCount>0</RetryCount>

 <ParameterList xsi:type="SOAP-ENC:Array" SOAP-
ENC:arrayType="cwmp:ParameterValueStruct[9]">

 …

 </ParameterList>

 </cwmp:Inform>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 <DeviceId>

 <Manufacturer>AirTies</Manufacturer>

 <OUI>001CA8</OUI>

 <ProductClass>Air4920DK-WA</ProductClass>

 <SerialNumber>AT1931620001413</SerialNumber>

 </DeviceId>

Inform 3/5 (DeviceId)

Inform 4/5 (Event)

 <Event xsi:type="SOAP-ENC:Array" SOAP-
ENC:arrayType="cwmp:EventStruct[1]">

 <EventStruct>

 <EventCode>2 PERIODIC</EventCode>

 <CommandKey/>

 </EventStruct>

 </Event>

Inform 5/5 (ParameterList)
 <ParameterValueStruct>

 <Name>Device.DeviceInfo.SoftwareVersion</Name>

 <Value xsi:type="xsd:string">1.23.4.11.3795</Value>

 </ParameterValueStruct>

 <ParameterValueStruct>

 <Name>Device.ManagementServer.ParameterKey</Name>

 <Value xsi:type="xsd:string">2018-01-06 13:16:14.145930+00:00</Value>

 </ParameterValueStruct>

 <ParameterValueStruct>

 <Name>Device.ManagementServer.PeriodicInformInterval</Name>

 <Value xsi:type="xsd:unsignedInt">3600</Value>

 </ParameterValueStruct>

TR-069 RPC Methods

● TR-069 defines the RPC methods in play in
CWMP

● Next slide show a table of the required RPC
methods which a CPE and an ACS must
support.

● There is also a list of optional RPC methods
which are not required. Stuff for another talk.

The Best Laid Plans...
● TR-069 is far from perfect. For example:
● It is way more difficult than it should be to figure out

which CWMP version the CPE is using.
● It is way more difficult than it should be to figure out

which Data Model the CPE is using.
● In some versions of CWMP or Data Models they

simply forgot to include the version in the early
versions, which makes it impossible to do this
perfectly.

● Next slide shows one of several tables and
flowcharts from TR-069 to help figure out the maze of
versions

CWMP version != CWMP
namespace

End of TR-069 Intro

● So, we needed TR-069 at
BornFiber

● We wanted our ACS tightly
integrated into our existing system

● We always aim to keep our stack
as small as possible. Managing
software takes time too.

● Time to choose an ACS!

ACS Servers

● Picking an ACS server comes down to the
usual choices:

● Open Source
– http://www.freeacs.com/

– https://github.com/genieacs/genieacs

● Commercial
– Many options, and the large CPE manufacturers all

have their own software available for a price.

http://www.freeacs.com/
https://github.com/genieacs/genieacs

Crazy idea: Could we build an ACS?
● Pros

– We have some experience in this area

– Would be tightly coupled with our current system

– Would not expand our current software stack at all

– We don’t need the entirety of ACS. We basically
need to tcpdump a few sessions with GenieACS
and serve up the same XML.

● Cons
– Big standard, much XML

– Device quirks could (and does) make things tricky

– People tend to look at you funny at meetings

Tools and tips

● Have a local testbed, including DHCP, NTP, TFTP,
DNS server...

● Use HttpRequester or similar browser plugin for quick
testing

● Use real devices and Wireshark, early and always.
● Have a local greppable repo with the files from

https://www.broadband-forum.org/standards-and-software
/technical-specifications/tr-069-files-tools

● Like in https://github.com/tykling/cwmpdocs
● Also https://www.qacafe.com/tr-069-training/

https://www.broadband-forum.org/standards-and-software/technical-specifications/tr-069-files-tools
https://www.broadband-forum.org/standards-and-software/technical-specifications/tr-069-files-tools
https://github.com/tykling/cwmpdocs
https://www.qacafe.com/tr-069-training/

SOAP in Python

● SOAP clients are easy to find, especially with a
WSDL. I have used
– Suds

– Zeep

● A good list on
https://wiki.python.org/moin/WebServices#SOA
P

CWMP Clients

For testing purposes it can be nice to have a
software CWMP client. But mostly I use real devices.

● Open Source
– http://www.easycwmp.org/

● Commercial (used in Icotera for example)
– https://www.avsystem.com/products/libcwmp/

http://www.easycwmp.org/
https://www.avsystem.com/products/libcwmp/

4) Django Time, yay!

● An ACS SOAP server has a simple enough job, on paper:
– Accept a POST request with some XML

– Parse the XML, put a response together, send it back (with the
correct MIME type)

– Remember to include a session cookie so future requests can
be linked to the same session

– Done! Standard HTTP stuff, perfect for Django. Right? Right!

● We already had a (very simple) SOAP server running for
a partner API which does callbacks over SOAP.

● This made the task of building an ACS server
considerably less daunting. SOAP is not as dangerous or
difficult as it sounds!

A Simple Django SOAP Server 1/2
from defusedxml.lxml import fromstring

@csrf_exempt

@require_http_methods(['GET', 'POST'])

def soap_callback(request):

 if request.method == 'POST':

 try:

 xmlroot = fromstring(request.body)

 validxml=True

 processed=False

 except Exception as E:

 print 'got exception parsing XML: %s' % E

 validxml=False

 processed=True

A Simple Django SOAP Server 2/2
 content = render_to_string('soap_response_response.xml')

 response = HttpResponse(content, content_type='text/xml;
charset=utf-8')

 else:

 # no POST, just render and return the wsdl, hello Waoo

 content = render_to_string('soap_response.wsdl', {

 'hostname': settings.WAOO_SOAP_RESPONSE_HOSTNAME

 })

 response = HttpResponse(content, content_type='text/xml;
charset=utf-8')

 # set content-length header (or nothing works)

 response['Content-Length'] = len(content)

 return response

Introducing MrX
● Our central provisioning and CRM system at

BornFiber
● Django project written from scratch
● Maintains records on customers, products, network

equipment, circuits and much more.
● Already interfaces with the world outside of Django in

many ways:
– Partner SOAP API for provisioning tv stuff (client&server)
– Dynamic TFTP server (no files)
– Manages FreeRADIUS tables (DHCP and network)
– Configures network equipment over SSH
– Others I’ve forgotten

Introducing MrX
● Large project!
● First commit July 2015, currently at 4745 commits by 3 authors.
● 156 models across 30 apps

user@bornfiber-acs-dev:~/devel/mrx/src/mrx$ cloc .

 1005 text files.

 994 unique files.

 156 files ignored.

github.com/AlDanial/cloc v 1.70 T=20.77 s (45.0 files/s, 3073.8 lines/s)

Language files blank comment code

Python 309 6030 3389 31310

HTML 611 565 47 19573

JavaScript 5 197 45 1878

CSS 7 90 34 623

JSON 1 0 0 41

XML 2 0 0 10

SUM: 935 6882 3515 53435

user@bornfiber-acs-dev:~/devel/mrx/src/mrx$

Lessons Learned
● Django is an excellent choice for this kind of system
● We deloy to production multiple times a day
● Since the system is used a lot we needed a way to deploy

with little or no downtime. Currently we use uwsgi with –
touch-chain-reload

● We should have started out with fatter models and slimmer
views, we are getting there.

● Also working towards py3 and Django 2.0
● And Channels.
● History is hard.
● Building an asynchronous system on top of a synchronous

system is not without issues (race conditions?), MrTX?

The Django ACS App
● The ACS is mostly one view, AcsView. 425 lines

of code, 220 without comments and empty
lines.

● 9 models plus a couple of abstract models, take
up around 1400 lines, or just over 1000 without
comments.

● Other apps are expected to subclass
AcsDeviceBaseModel.

● We will look at the models before we dive into
the server view.

ACS App Models
● acs_device.py – Dynamically created ACS clients
● acs_device_basemodel.py – Abstract model
● acs_device_category.py – Grouping devices
● acs_device_model.py – HW model (from Inform)
● acs_device_vendor.py – HW vendor (from Inform)
● acs_http_basemodel.py – Abstract for the following 2
● acs_http_request.py – All HTTP requests received
● acs_http_response.py – All HTTP responses sent
● acs_queue_job.py – ACS job queue
● acs_session.py – ACS sessions

ACS App Models

● Each new ACS client creates a new AcsDevice
object.

● Each ACS session creates a new AcsSession
object, with a fk to AcsDevice.

● Each HTTP request creates a new
AcsHttpRequest object.

● Each HTTP response is saved as a new
AcsHttpResponse object.

● AcsDeviceModel and AcsDeviceVendor objects
are created as needed.

An ACS Device

AcsDevice Model Fields
class AcsDevice(BaseModel):

 model = models.ForeignKey('acs.AcsDeviceModel', related_name="acsdevices")

 serial = models.CharField(max_length=100)

 current_config_level = models.DateTimeField(null=True, blank=True)

 desired_config_level = models.DateTimeField(null=True, blank=True)

 current_software_version = models.CharField(max_length=50, blank=True)

 desired_software_version = models.CharField(max_length=50, blank=True)

 acs_xmpp_password = models.CharField(max_length=50, blank=True)

 acs_latest_inform = models.DateTimeField(null=True, blank=True)

 acs_parameters = models.TextField(blank=True)

 acs_parameters_time = models.DateTimeField(null=True, blank=True)

 acs_connectionrequest_password = models.CharField(max_length=50, blank=True)

AcsDevice Model Methods 1/2
 def latest_acs_session(self): Return the latest AcsSession
object

 def handle_user_config_changes(self): Check
self.acs_parameters for changes

 def get_desired_config_level(self): Return the config level we
want for this device

 def get_desired_software_version(self): Return the software
version we want

 def get_software_url(self, version): Returns the download URL
for the firmware for this device

 def update_acs_parameters(self, attributes_rpc_response):
Updates local XML param. cache

 def acs_parameter_dict(self): Return a dict of the local XML
parameter cache

 def acs_get_parameter_value(self, parameterpath): Returns a
specific value

AcsDevice Model Methods 2/2
 def acs_xmpp_username(self): Returns the XMPP conn. req.
username for this device

 def create_xmpp_user(self): Creates an account on the XMPP
server for this device

 def create_connreq_password(self): Create a new HTTP conn.
req. password

 def acs_connection_request_url(self): Returns the
connectionrequest URL for this device

 def acs_http_connection_request(self): Do a connectionrequest
(trigger Inform)

 def latest_client_ip(self): Return the client IP this device
had the last time we saw it

 def associate_with_related_device(self): Associate this ACS
device with a related real device

 def get_related_device(self): Returns the real device with a
relation to this AcsDevice

The ACS Session List

An ACS Session

AcsSession Model Fields
class AcsSession(BaseModel):

 acs_device = models.ForeignKey('acs.AcsDevice', null=True,
blank=True, related_name='acs_sessions')

 acs_session_id = models.UUIDField(default=uuid.uuid4)

 client_ip = models.GenericIPAddressField()

 client_ip_verified = models.BooleanField(default=False)

 reference = models.CharField(max_length=100, default='', blank=True)

 session_result = models.BooleanField(default=False)

 latest_rpc_method = models.CharField(max_length=100, default='',
blank=True)

 session_end = models.DateTimeField(null=True, blank=True)

 _device_uptime = DateTimeRangeField(null=True, blank=True) # use the
property device_uptime instead

 inform_eventcodes = ArrayField(models.TextField(), default=list,
blank=True)

 cwmp_namespace = models.CharField(max_length=100, default='',
blank=True)

 root_data_model = models.ForeignKey('acs.CwmpDataModel', null=True,
blank=True, related_name='acs_sessions')

AcsSession Model Methods
 def configuration_done(self): Property is true if already configured

 def get_device_parameterdict(self, configdict): Returns dict with
everything

 def configure_device_parameter_attributes(self, reason, parameterlist,
update_parameterkey=False): Change attributes on device

 def configure_device_parameter_values(self, reason,
update_parameterkey=False): Change values on device

 def soap_namespaces(self): Returns a dict of namespaces to use

 def get_inform_eventcodes(self, inform): Return list of Inform eventcodes

 def determine_data_model(self, inform): Figure out which DM we’re using

 def add_acs_queue_job(self, cwmp_rpc_object_xml, reason,
automatic=False, urgent=False): Add a new ACS job

 def configure_device(self): Configures the device (if possible)

 def get_latest_http_tx(self): Return latest HTTP request/response

 def update_session_result(self): Session result is True if clean session

 def get_latest_rpc_method(self): Return name of the latest RPC method

AcsSession Model Methods
 def acs_rpc_get_rpc_methods(self, reason, automatic=False, urgent=False):

 def acs_rpc_set_parameter_values(self, reason, parameterdict, automatic=False,
urgent=False, update_parameterkey=False):

 def acs_rpc_get_parameter_values(self, reason, parameterlist, automatic=False,
urgent=False):

 def acs_rpc_get_parameter_names(self, reason, parampath='', nextlevel='0', automatic=False,
urgent=False):

 def acs_rpc_get_parameter_attributes(self, reason, parameterlist, automatic=False,
urgent=False):

 def acs_rpc_set_parameter_attributes(self, reason, parameterdict, automatic=False,
urgent=False, update_parameterkey=False):

 def acs_rpc_add_object(self, reason, objectname, automatic=False, urgent=False,
update_parameterkey=False):

 def acs_rpc_delete_object(self, reason, objectname, automatic=False, urgent=False,
update_parameterkey=False):

 def acs_rpc_reboot(self, reason, automatic=False, urgent=False):

 def acs_rpc_download(self, reason, parameterdict, automatic=False, urgent=False):

 def acs_rpc_upload(self, reason, parameterdict, automatic=False, urgent=False):

 def acs_rpc_factory_reset(self, reason, automatic=False, urgent=False):

 def acs_rpc_schedule_inform(self, reason, parameterdictdict, automatic=False, urgent=False):

Using AcsDeviceBaseModel
● The idea is that other apps (in this example

WifiService.WifiDevice) will subclass
AcsDeviceBaseModel, overriding methods as needed

● An ACS device can live happily in the AcsDevice model
without ever being associated with a real device – an
AcsDevice it is just an HTTP client after all

● A real device can exist happily in a model subclassing
AcsDeviceBaseModel without ever seeing an ACS session.

● But ideally most objects in the model subclassing
AcsDeviceBaseModel will end up having a FK relation to
AcsDevice

● IP verification on each session through radius ensures
everything is secure

AcsDeviceBasemodel methods 1/2

class AcsDeviceBaseModel(BaseModel):

 class Meta:

 abstract = True

 def verify_acs_client_ip(self, ip):

 """ Method to verify the ACS client IP, override in your own models. """

 raise NotImplementedError

 def is_configurable(self):

 """ Method to determine if an acsdevice is configurable, override in your own models. """

 raise NotImplementedError

 def acs_session_pre_verify_hook(self):

 """ This method is called every time an ACS device runs an ACS session, before
verify_acs_client_ip() is called. Override in your own models as needed. """

 return False

AcsDeviceBasemodel methods 2/2
 def acs_session_post_verify_hook(self):

 """ This method is called every time an ACS device runs an ACS session, after
verify_acs_client_ip() is called. Override in your own models as needed. """

 return False

def get_acs_config(self):

 """ This method is called while configuring an ACS device. Override in your own models to add
device specific config."""

 raise NotImplementedError

 def get_user_config_changelist(self):

 """This method should acs_device.acs_parameters versus the local records and returns a list
of changed elements, if any. Should return an empty list if everything in acs_parameters matches
the local records."""

 raise NotImplementedError

 def handle_user_config_change(self):

 """Called whenever the configuration on an ACS device is different from what we configured on
it."""

 raise NotImplementedError

Device Quirks

● TR-069 is not perfect
● And it is pretty complex
● And CPEs are developed on a budget
● So expect bugs.
● Bad ones.

Device Quirks - HTTP

● The first device I worked with has pretty poor HTTP
support

● It doesn’t support HTTPS.
● It doesn’t even support HTTP 1.1
● It resolves the hostname, and inserts the IP address as

Host: header, and does the request. Basically HTTP/0.9.
● We run our ACS server on a seperate port for this reason
● Actually IANA assigned TCP/7547 for CWMP

Device Quirks - TLS

● TLS support is poor to say the least. TR-069 mandates
TLS, latest version says minimum TLS 1.0 but
recommends 1.2.

● Real world looks a lot different.
● TLS is used for CWMP of course, but also for downloads

and for the XMPP client, to name a few.
● I have yet to encounter a device with a nice, well-

functioning TLS client.
● Problems range from no TLS at all, to bad ciphers, and

bad CA support.

Device Quirks – Cookie Handling

● Something as plain as cookie handling can present issues.
● We use the normal Django cookie-based session handling

which worked well until we came across a device where it
didn’t.
– Set-Cookie:

acs_session_id=6244efcf78c741c38defa63105fb457c;
expires=Wed, 21-Feb-2018 14:03:53 GMT; Max-Age=60; Path=/

● Became:
– Cookie: acs_session_id=6244efcf78c741c38defa63105fb457c;

$Path="/acs/";$Domain="acs.example.invalid"

– Cookie: 21-Feb-2018;$Domain="acs.example.invalid"

Device Quirks – Data Model

● In something as complex as TR-069 it is pretty important to keep to the
standards.

● Mostly devices pick a CWMP version (actually the server picks it really)
and they use some datamodel, which can be read or inferred from the
Inform. But not always:

Hej Thomas,

Lige nu er der implementeret en blanding af TR98, TR181
og noget AirTies specifikt.

De arbejder hen imod kun at have TR181 - men det er
ikke noget der er lige på trapperne, dvs. inden for 3
md. Der vil nok gå mellem 6 og 12 md. før vi er der.

Hindsight and Future Plans

● The ACS app has changed multiple times. The
first iteration was considerably less DRY.

● I consider it more or less complete for our
needs. Future plans include:
– Keep XML in files instead of the DB

– We are adding more devices

– I want to opensource the ACS app (although I have
no idea how)

Numbers

● AcsSession: 3.502.819
● AcsHttpRequest: 14.529.910
● AcsHttpResponse: 14.514.803
● Average session time: 8 sec (ish)

Questions

 ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

